675 research outputs found

    Time is money: life cycle rational inertia and delegation of investment management : [Version November 2013]

    Get PDF
    We investigate the theoretical impact of including two empirically-grounded insights in a dynamic life cycle portfolio choice model. The first is to recognize that, when managing their own financial wealth, investors incur opportunity costs in terms of current and future human capital accumulation, particularly if human capital is acquired via learning by doing. The second is that we incorporate age-varying efficiency patterns in financial decisionmaking. Both enhancements produce inactivity in portfolio adjustment patterns consistent with empirical evidence. We also analyze individuals’ optimal choice between self-managing their wealth versus delegating the task to a financial advisor. Delegation proves most valuable to the young and the old. Our calibrated model quantifies welfare gains from including investment time and money costs, as well as delegation, in a life cycle setting

    On-Chip Cavity Optomechanical Coupling

    Get PDF
    On-chip cavity optomechanics, in which strong co-localization of light and mechanical motion is engineered, relies on efficient coupling of light both into and out of the on-chip optical resonator. Here we detail our particular style of tapered and dimpled optical fibers, pioneered by the Painter group at Caltech, which are a versatile and reliable solution to efficient on-chip coupling. First, a brief overview of tapered, single mode fibers is presented, in which the single mode cutoff diameter is highlighted. The apparatus used to create a dimpled tapered fiber is then described, followed by a comprehensive account of the procedure by which a dimpled tapered fiber is produced and mounted in our system. The custom-built optical access vacuum chambers in which our on-chip optomechanical measurements are performed are then discussed. Finally, the process by which our optomechanical devices are fabricated and the method by which we explore their optical and mechanical properties is explained. It is our expectation that this manuscript will enable the novice to develop advanced optomechanical experiments.Comment: 31 pages, 9 figure

    Cognitive Ability, Financial Literacy, and the Demand for Financial Advice at Older Ages: Findings from the Health and Retirement Study

    Get PDF
    This paper evaluates how cognitive ability and financial literacy shape the demand for financial advice at older ages. We analyze a new module of the Health and Retirement Study which queried older respondents about their usage of financial advice and other financial management activities. Results show that cognitive ability and financial literacy are often positively correlated with advice-seeking for financial matters. Generally speaking, the more cognitively able tend to seek financial advice from professionals outside of family members; nevertheless, they are also more likely to be overconfident regarding their investments. The more financially literate also tend to ask for help with money management, but they are less likely to be overconfident. Overall, our findings are suggestive that cognitive ability as well as financial literacy can help shape older persons’ money management behaviors

    Quantum Gates and Memory using Microwave Dressed States

    Full text link
    Trapped atomic ions have been successfully used for demonstrating basic elements of universal quantum information processing (QIP). Nevertheless, scaling up of these methods and techniques to achieve large scale universal QIP, or more specialized quantum simulations remains challenging. The use of easily controllable and stable microwave sources instead of complex laser systems on the other hand promises to remove obstacles to scalability. Important remaining drawbacks in this approach are the use of magnetic field sensitive states, which shorten coherence times considerably, and the requirement to create large stable magnetic field gradients. Here, we present theoretically a novel approach based on dressing magnetic field sensitive states with microwave fields which addresses both issues and permits fast quantum logic. We experimentally demonstrate basic building blocks of this scheme to show that these dressed states are long-lived and coherence times are increased by more than two orders of magnitude compared to bare magnetic field sensitive states. This changes decisively the prospect of microwave-driven ion trap QIP and offers a new route to extend coherence times for all systems that suffer from magnetic noise such as neutral atoms, NV-centres, quantum dots, or circuit-QED systems.Comment: 9 pages, 4 figure

    A molecular basis for the T cell response in HLA-DQ2.2 mediated celiac disease

    Get PDF
    The highly homologous human leukocyte antigen (HLA)-DQ2 molecules, HLA-DQ2.5 and HLA-DQ2.2, are implicated in the pathogenesis of celiac disease (CeD) by presenting gluten peptides to CD4+ T cells. However, while HLA-DQ2.5 is strongly associated with disease, HLA-DQ2.2 is not, and the molecular basis underpinning this differential disease association is unresolved. We here provide structural evidence for how the single polymorphic residue (HLA-DQ2.5-Tyr22α and HLA-DQ2.2-Phe22α) accounts for HLA-DQ2.2 additionally requiring gluten epitopes possessing a serine at the P3 position of the peptide. In marked contrast to the biased T cell receptor (TCR) usage associated with HLA-DQ2.5–mediated CeD, we demonstrate with extensive single-cell sequencing that a diverse TCR repertoire enables recognition of the immunodominant HLA-DQ2.2-glut-L1 epitope. The crystal structure of two CeD patient-derived TCR in complex with HLA-DQ2.2 and DQ2.2-glut-L1 (PFSEQEQPV) revealed a docking strategy, and associated interatomic contacts, which was notably distinct from the structures of the TCR:HLA-DQ2.5:gliadin epitope complexes. Accordingly, while the molecular surfaces of the antigen-binding clefts of HLA-DQ2.5 and HLA-DQ2.2 are very similar, differences in the nature of the peptides presented translates to differences in responding T cell repertoires and the nature of engagement of the respective antigen-presenting molecules, which ultimately is associated with differing disease penetrance

    Bioinformatics on the Cloud Computing Platform Azure

    Get PDF
    We discuss the applicability of the Microsoft cloud computing platform, Azure, for bioinformatics. We focus on the usability of the resource rather than its performance. We provide an example of how R can be used on Azure to analyse a large amount of microarray expression data deposited at the public database ArrayExpress. We provide a walk through to demonstrate explicitly how Azure can be used to perform these analyses in Appendix S1 and we offer a comparison with a local computation. We note that the use of the Platform as a Service (PaaS) offering of Azure can represent a steep learning curve for bioinformatics developers who will usually have a Linux and scripting language background. On the other hand, the presence of an additional set of libraries makes it easier to deploy software in a parallel (scalable) fashion and explicitly manage such a production run with only a few hundred lines of code, most of which can be incorporated from a template. We propose that this environment is best suited for running stable bioinformatics software by users not involved with its development. © 2014 Shanahan et al

    A dose ranging trial to optimize the dose of Rifampin in the treatment of tuberculosis

    Get PDF
    The study was funded by the EDCTP (European & Developing Countries Clinical Trials Partnership), NACCAP (Netherlands-African partnership for Capacity development and Clinical interventions Against Poverty-related diseases) and the Bill & Melinda Gates Foundation.Rationale: Rifampin at a dose of 10 mg/kg was introduced in 1971 based on pharmacokinetic, toxicity and cost considerations. Available data in mice and humans showed that an increase in dose may shorten the duration of tuberculosis treatment. Objectives: To evaluate the safety and tolerability, the pharmacokinetics and the extended early bactericidal activity of increasing doses of rifampin. Methods: Patients with drug-susceptible tuberculosis were enrolled into a control group of 8 patients receiving the standard dose of 10 mg/kg rifampin, followed by consecutive experimental groups with 15 patients each receiving rifampin 20 mg/kg, 25 mg/kg, 30 mg/kg and 35 mg/kg, respectively, for 14 days. In all patients isoniazid, pyrazinamide and ethambutol were added in standard doses for the second 7 days of treatment. Safety, pharmacokinetics of rifampin, and fall in bacterial load were assessed. Measurements and Main Results: Grade 1 and 2 adverse events were equally distributed between the five dose groups; there were 5 grade 3 events of which 1 was a possibly related hepatotoxicity. Areas under the time-concentration curves and peak serum concentrations of rifampin showed a more than proportional increase with dose. The daily fall in bacterial load over 14 days was 0.176, 0.168, 0.167, 0.265, and 0.261 log10CFU/ml sputum in the 10, 20, 25, 30 and 35 mg/kg groups respectively. Conclusions: Two weeks of rifampin up to 35 mg/kg was safe and well tolerated. There was a non-linear increase in exposure to rifampin without an apparent ceiling effect and a greater estimated fall in bacterial load in the higher dosing groups. Clinical trial registration available at www.clinicaltrials.gove, ID NCT01392911.PostprintPeer reviewe

    Conversion of typical to "atypical" atrioventricular nodal reentrant tachycardia after radiofrequency catheter modification of the atrioventricular junction

    Full text link
    Typical atrioventricular (AV) nodal reentry tachycardia (AVNRT) is characterized by anterograde activation over a slowly conducting pathway and by retrograde activation through a rapidly conducting pathway. Preliminary reports suggest that radiofrequency catheter modification can eliminate typical AVNRT while preserving anterograde conduction. Radiofrequency catheter modification was used to treat 88 patients with typical AVNRT. After baseline electrophysiologic evaluation, the ablation catheter was positioned proximal and superior to the site of maximal His deflection. Radiofrequency energy was applied until there was significant attenuation of retrograde conduction, and elimination of AVNRT inducibility. Eighty-one patients were successfully treated and form the basis of this report.A new paroxysmal supraventricular tachycardia with RP > PR interval was induced at electrophysiologic testing after successful ablation in 9 patients (11%). Mean atrial-His activation time was 140 +/- 31 ms, and the ventriculoatrial activation time was 170 +/- 46 ms. This arrhythmia was induced only with ventricular pacing during isoproterenol infusion and appeared to be mediated by AV nodal reentry. New retrograde dual AV nodal physiology after modification was more frequent in patients with atypical tachycardia than in those without (4 of 9 vs 2 of 72; p Results of this study confirm that typical AVNRT can be rendered noninducible without the complete destruction of reentrant pathways. Because induction of "atypical" AVNRT was not predictive of spontaneous arrhythmia recurrence, it should not be an indication for additional ablation sessions or long-term drug therapy.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30203/1/0000593.pd
    • …
    corecore